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ABSTRACT 

The study of the exact interpolation of quadratic norms in vector spaces 
depends in an essential way on the theory of monotone matrix functions 
developed by Loewner in 1934 [4]. This theory, in its turn, depends on 
Loewner's solution of a problem of interpolation by rational functions of a 
certain class. The discussion of this latter problem is necessarily complicated, 
and Loewner's text does not lend itself to ready reference. It has therefore 
seemed worthwhile to recast a portion of Loewner's results in a form more 
suited to the applications we have in view. Our work, however, is not wholly 
derivative; none of our theorems are explicitly stated by Loewner and our 
arguments, which are of a more geometric character, are essentially different. 
The knowledgeable reader will note that our hypotheses are slightly stronger 
than Loewner's and that our results are therefore also stronger. For the 
applications which we have in mind, Theorem 11I is the most important 
result; the proof of this theorem depends on all of the previously developed 
theory. 

1. Introduction. We consider the class P of functions qS(0 analytic in the 
upper half-plane with positive imaginary part: ~b(0 -- U(0 + iV((), v(O >-_ O. 
A convenient summary of the properties of this well-known class may be found 
in [1]. In particular, a function is in P if  and only if it has a representation of 
the form 

(1) ~b(O = a ~ + f l +  2 - (  2 2 + 1  

where 0~ = 0, fl is real and p a positive Borel measure on the real axis for which 
j'(22 + 1)-ld/@~) is finite. The representation is unique. 

I f  (a, b) is the open interval a < x < b of  the real axis, by P(a, b) we denote 
the class of those functions in P which are real and regular on the interval (a, b) 
and which therefore admit an analytic continuation into the lower half-plane 
which is given by reflection. It is not difficult to show that qS( 0 belongs to P(a, b) 
i f  and only if the corresponding measure/~ has no mass in the interval a < 2 < b. 

It is important to note that the class P(a, b) has a certain compactness property: 
I f  ~bn(O is a sequence in P(a, b) such that for a pair of distinct points z' and z" 
of the interval the sequences ~bn(z' ) and ~b~(z") are bounded, then there exists a 
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subsequence of those functions converging uniformly on closed subintervals of 
(a, b) to a function ¢0(() in P(a, b). We do not give the proof in detail, but remark 
that the representation (1) for functions in P may equally well be written 

(2) ¢ ( ( ) = ~ ( + f l +  f 4 ( + 1  d/~(4) 
4 - - (  4 2 + 1  

and if the coefficient ~ is thought of as a positive mass at infinity, we obtain a 
positive measure dr(4) on the compactified real axis consisting of that mass at 
infinity and the distribution (4 2 + 1)-ldp(4). This is a Borel measure of finite 
total mass, and to measures of this kind we may apply Helly's theorem. We 
will have 

¢ . ( z ' )  - ¢ . ( z" )  : din(4) 
z '  - z" = + J (4 - - z") 

and since there exists a positive C such that C-1(2 2 + 1) < (2 - z ')(2 - z") 
< C(2 2 + 1) for all 4 outside (a, b), the boundedness of the numbers ¢.(z') 
and ¢.(z") implies the boundedness of the total masses of the corresponding 
measures dr.(4). 

We also note that the subsequence of ¢ . (0  converges to ¢o(0 at all points 
which are bounded away from the supports of the measures dv.(4). In the special 
case when the functions of the sequence are all rational functions of degree at 
most N, the measures dv. will consist of at most N point masses, one of them 
possibly at infinity; the limiting measure dv o will have the same property and 
hence ¢0(0 will also be rational, of degree at most N. 

Suppose that ~b(0 belongs to P(a, b) and that N is an integer > 1; let 
~1, ~z, Ca, "",~N be any set of N distinct points in (a, b) and let similarly 
r/i, ~/2, ~/3, "", r/N be another set of N distinct points in that interval. We make 
no hypothesis requiring that these two sets be disjoint. Form the matrix M of 
order N defined by 

M i j  = ¢ ( ¢ i )  - COb) i f  ~i ~ t b 
~ - r b 

~b'(~) if ~ = r/i. 

Evidently the matrix elements Mii are non-negative. 

THEOREM 1. I f  ¢(~) belongs to P(a, b) and M is a corresponding matrix of 
order N then (i) det (M)=0  if and only if ¢ (0  is a rational function of degree at 
most N -  1. 

(ii) I f  the sequences {~} and {~b} are both monotone increasing then det(M) > 0. 
(iii) I f  det(M) = 0, the function ¢(0  is uniquely determined by the data, i.e. 



1966] THE THEOREMS OF LOEWNER AND PICK 155 

the points {~,}, {t/j} and the values of ~(~) at those points, as well as the values 
of its derivative if  such values occur in M. 

Proof. We first prove (i) and (ii) under the special hypothesis that ~ = 0 
in the representation (1) for cP(O. Using that representation, we easily find for 
all i and j that 

f d#(2) 
Mij = (4 - ~i)(4 - t/j) 

even when ~ = t/j. We then introduce the N functions f~(X) = I/(2 - ~ )  which 
are integrable square relative to the measure/~, and similarly the N functions 

1 
gr( ) = 

2 - qr 

which have the same property. Clearly M~r = (fi, gr), the inner product being 
taken in L2Q2), and the determinant of M is a kind of Gramm's determinant. 

I f  q~(0 is rational, of degree at most N - 1, the measure/~ consists of point 
masses at the poles of qS(0, and there are at most N - 1 of them. Thus the space 
L2Q2) has dimension at most N - 1 and there exists a non-triviallinear dependance 
between the fl ,  whence d e t ( M ) =  0. 

Conversely, if  the determinant vanishes, there must exist a linear combination 
f*(2) '=  2~=1 c~fi(2) which is orthogonal to every gj(2). We may write 
f*(2) = p(2)/Q(2) where Q(2) = I-[~=1(2 - ~t) and p(2) is a polynomial of degree 
at most N - 1, since the rational f*(2) vanishes at infinity. If  R(2) N = N j  =1(,~-- t/j), 
the function g*(2) = p(2)/R(2) is a linear combination of the functions gr(2), 
and hence (f*, g * ) =  0. This may be written 

f PO') 2 Q(;t)R(2) d#(2) = 0 

and we deduce, since the denominator is bounded from below on the support 
of # by a positive constant, that the measure # is concentrated at the zeros of 
p(2), a set consisting of at most N - 1 points. Thus $(() is rational, of degree 
at most N - 1 .  

If  we suppose that ~b(0 is not rational of degree at most N - 1 and that the 
points {~i, t/r} are given as monotone sequences, we vary the {t/r } by writing 
t/r(t) = t~ r + (1 - t)t/j. As t varies over the unit interval, det M(t)is  a continuous 
function of t. For any t there will be N distinct t/j(t) as well as ~,  hence the 
determinant will never vanish and therefore keeps a constant sign. For t = 1, 
however, we have ~i = t/t, whence fi(2) = g/(2) for all i, and therefore M is a 
Gramm's determinant. Since it does not vanish, it is positive, whence det M(0) > 0. 
For 4~(~) rational of degree at most N - 1, det M(t) is of course identically zero. 
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We next establish (i) and (ii) without the special hypothesis g = 0. From the 
formula (1) it is easy to deduce that the non-negative c¢ is the limit as ~ approaches 
infinity along the imaginary axis of the ratio ~b(~)/~. Accordingly, if  qg(~) in P(a, b) 
corresponds to a positive g and is positive in that interval, the function ~(~) 
= - 1/q~(~) is also in P(a, b) and corresponds to g = 0. I f  M* is the matrix 
corresponding to ~k(~), it is easy to see that de t (M*)=  C-ldet(M) where 
C = 1-]~=l~b(~z)~b(r/i) > 0. Since ~(~) is rational of degree k if  and only if  qg(~) 
is, we see that (i) and (ii) hold whenever the function qS(~) is positive on (a, b), 
or at least on a subinterval containing the points {~} and {r/i }. Since the addition 
of a constant to ~b(~) does not affect the matrix M at all, and similarly does not 
affect the rationality or degree of the function, the assertions (i) and (ii) are valid 
in any case. 

To establish (iii) we suppose that det(M) = 0 and therefore that ~b(~) is rational 
of degree at most N - 1. I f  there were two such functions ~b(~), their difference 
would be rational of degree at most 2N - 2, but the total order of its zeros would 
be 2N, thus the difference is identically zero. This completes the proof of Theorem I. 

REMARK 1. We suppose that ~b(~) is of degree exactly N - 1, the determinant, 
therefore, being zero. Supposing, in addition, that r/i coincides with none of 
the {~i} we expand the determinant along the first column, displaying the de- 
pendence of terms on r/i and ~b(r/1 ) to obtain 

¢(~i)mi N 
det(M) = ~ ~ S~-~1 ~b(r/l ) 2~ mi 

i = 1  i = i  ~ i  - r/1 

where the ms are appropriate(non-zero)minors of the determinant. We introduce 
the rational functions 

N N 

F(~) = I: ¢(~,)mi and G(~)=  ]g mi 

and note that since r/i may be chosen almost arbitrarily in the interval (a, b), 

0 = det(M) = F(~) - ¢(~)G(~), whence ~(~) = F(~)/G(~). 

The determinant is obviously a linear function in the entry ¢(r/~) and our purpose 
here is to emphasize that this linear function is not identically zero. We have 
0 = F(r/1) - ¢(r/1)G(r/i) and if  this function vanished identically in the variable 
¢(r/1) we would have 0 = F(r/1) = G(r/l); it would follow, since G(~) and F(~) 
have a common zero at ~ = r/1 as well as at infinity that their ratio was a rational 
function of degree smaller than N - 1, contradicting the hypothesis that ¢(~) 
is of degree exactly N - 1. It is not difficult to extend this argument to the case 
when r/~ happens to coincide with one of the points ¢~. We shall often make use 
of this remark in the sequel where we will have a function ¢(~) of degree N - 1 
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in the class P(a, b) and a set of 2N points of the interval, as well as another function 
g ( 0  defined on those 2N points and coinciding with ~ ( 0  at all but one of them. 
Then the hypothesis that the determinant of  type M computed for g ( 0  vanishes 
will imply that g(() coincides with ~b(0 on all 2N points. 

REMARK 2. For  the applications of  Theorem I it is incovenient that the the- 
orem requires that the points {~} and {t/j} be interior points of the interval 
(a, b). We therefore introduce the class P[a/b] consisting of those functions in 
P(a, b) which are continuous on the closed interval [a, b]. The proof  of Theorem I 
carries over to functions in this class, where we permit a choice of  the points 
{~i) and {~/j} which may include one or more of the end points. Here, however, 
we cannot admit that one of  the end points be taken both as a ~ and an ~/, since 
the derivatives ~b'(a) and ~'(b) may be infinite for some functions in P[a, b]. 
The proof  of this variant of  Theorem I is virtually the same, except that if, say, 
41 = a, the corresponding function f1(2) = (2 - a) -1 may no longer be in the 
space L2(/0; however, the integrals which we have written exist in any case. 

2. The cone P(Z)). We suppose given on the real axis a finite set Z of  l points: 

Z 1 < Z 2 < Z 3 < . . .  < Z l 

and let C(Z) denote the space of  all real functions f(z) defined on Z. C(Z) is a 
real/-dimensional vector space containing a convex cone, P(Z), the restrictions 
to Z of  functions in the class P[zl,  z~]. For  any f i n  C(Z) we introduce its Loewner 
determinants, which are defined as follows. For  any subset S of Z consisting of 
an even number of  points we write the points of S in the following fashion: 

~1 < /71 < ~2 < /72 < "'" < ~N < ~N 

and form the matrix M, where 

M~j  = f ( ¢ i )  - f ( ~ j )  

The determinant of  this matrix is the Loewner determinant associated with f 
and S. Evidently there are as many Loewner determinants as there are non- 
empty subsets of Z of even cardinal, viz. 2 ~- 1 _ 1 of them. 

The following assertion is an immediate consequence of Theorem I. If  f(z) 
in C(Z) belongs to P(Z), then 

I. All of the Loewner determinants o f f  are non-negative and 
II. I f  a Loewner determinant o f f  vanishes, so also do all other Loewner deter- 

minants of the same or higher order. 
It is our purpose to show that these conditions are also sufficient for f in C(Z) 
to belong to P(Z). To establish this, it is necessary to study the convex cone P(Z) 
in greater detail. We consider it first under the auxiliary hypothesis that I is odd: 
I = 2N + I, N ~_ I. 
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LEMMA 1. I f  f belongs to P(Z), it is an interior point of  that cone i f  and only 
i f  all of  its Loewner determinants are positive. 

Proof. Suppose, first, that a Loewner determinant vanishes; from Theorem I 
it follows that f is the restriction to Z of a uniquely determined function in the 
class P[Zl, zd which is rational of degree at most N - 1. Suppose k is the degree 
of  that function and consider a Loewner determinant of order k + 1. This deter- 
minant vanishes. From Remark 1 we see that the determinant is not identically 
zero in the variablef(zl). It follows that if  the value o f f  at zl is slightly changed 
in the appropriate direction, the Loewner determinant becomes negative and 
the perturbed function is not in the cone P(Z). Thus f i s  the limit of elements in 
the complement of P(Z) and hence is a boundary point of the cone. We note also 
that this part of our argument does not depend on the parity of 1. 

Conversely, if  all of the Loewner determinants are positive f is the restriction 
to Z of a function ~b(0 in P[zl, zd which is not a rational function of degree 
smaller than N. Suppose, first, that ~b(O is rational of  degree N, and indeed of 
the form 

N 

~b(~) = fl + X~ ms 

Here the ms are positive and the poles 2 i are outside the interval [zl, zt]. We 
adjoin 2N + 1 ---- l real variables: c, al, a2, "',  aN, bl, b2, "", bN to form 

r(¢,a,,b~,c) =(13 + c) + [ (1 + ai)ms 
s=l 2i + b i -  ~ " 

For small values of al and bi this is a function in the class P[zl, zd; its restriction 
to Z then determines a mapping of a neighborhood of 0 in the space of I real 
variables into a neighborhood of f i n  C(Z). We have only to show that  the mapping 
is onto, i.e. that its Jacobian does not vanish at the origin. I f  we compute the 
partial derivatives of F at the origin we find 

8F _ m~ dF _ - m j  aF  _ 1. 
~ai 2 ~ -  ~ abj (,~j - 0 2 Oc 

I f  the Jacobian vanishes, there is a linear combination 

N Ci N D~ 
H ( 0 = B +  Z ~ + Z (2i ~)2 

i=1 ~i ~ S f f i l  - -  

which vanishes on the set Z and hence has 2N + 1 zeros. Since the total order of 
the poles is at most 2N this is impossible. The same argument goes through if 
we suppose that the function ~b(0 is rational, of  degree N, but with a pole at 

infinity, viz. 
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N - 1  
ms  ~(~) = ~ + ~+ ~_~ ,~- ( -  

159 

The auxiliary functions are 

. (~ + bN) F((,a.  bi, c) = ~(1 + aN)([ -- ~-b-NN) 
N-1 (1 + ai)mt 

+ ~ + c ) +  
i ffil 2 i  + b~ - 

We remark next that if ~b(() can be decomposed in any way into a sum 
q~l(~) + ~b2(() of functions in P there exists a corresponding decomposition of 
f = f~ + fz in P(Z); if one of the terms is an interior point of P(Z) t hen f i s  too. 
It follows that if the measure/t associated with ~b(() has N distinct point masses 
thenf is  an interior point of P(Z). To complete the proof, therefore, we need only 
consider the case when the measure # has no point masses, and we may suppose 
that # is concentrated on an interval I lying wholly to one side of the interval 
[zl, z~]. On that interval we consider the 1 functions hk(,~ ) = 1 2 -  Z k 1-1 
which will be linearly independant in L2(p) since otherwise there would exist a 
linear combination of them which vanished for infinitely many points in I and 
was a rational function of 2. For a fixed small positive e we may write ~b(() in 
the form 

q~(0 = ~(0  + e ~=l~bi(() where ~b(0 is in P[zl, zl] and ~bi(~) 
= fhi(2)d#(2)/(2 - ~) is in the same class. The functions ~bi(0, when restricted 
to Z, form a linearly independant set in C(Z) since the determinant of the matrix 
Hij = ~bi(zk) is essentially the Gramm's determinant (hi, hi) and therefore cannot 
vanish. Thus for small coefficients a~ the functions 

l 

~k(~) + e ~ (1 + ai)~bi(O 
iffil 

map onto a neighborhood of f in C(Z). 

LEMMA 2. Every f in P(Z) is a restriction to Z of a function in P[zl, zl] which 
is rational and of degree at most N. This function is unique. 

P r o o f .  The uniqueness is obvious, since if there were two such functions 
their difference would be rational of degree at most 2N but would have 2N + 1 
zeros. To prove the lemma, we consider the set R(Z), the subset of P(Z) consisting 
of restrictions to Z of rational functions of degree at most N which are in 
P[zl, zd. We must show that R(Z) coincides with P(Z). Clearly R(Z) contains all 
of the boundary points of P(Z) which belong to that cone. Moreover, if f belongs 
to R(Z) and is an interior point of P(Z), the argument of the second part of the 
proof of the previous lemma shows tha t f i s  surrounded by a neighborhood which 
belongs itself to R(Z). Thus the interior points of P(Z) which belongs to R(Z) are 
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interior points of the latter cone. To complete the proof, we must show that no 
interior point f of P(Z) can be a boundary point of R(Z). 

If such anfexists  there is a sequencefn(z) in R(Z) converging tof(z) uniformly 
on Z. Using the compactness property mentioned in the Introduction we deduce 
that there exists a rational function ~o(~) of degree at most N which coincides 
with f(z) at all points z in Z bounded away from the supports of the measures #n 
occuring in the representation (l) for f~(0. Thus we have (~o(zk) --f(zk) for all k 
satisfying 2 -< k -< ! - I. We cannot have f(z,)  = O0(zl) and f(z,) = ~o(Zl) 
simultaneously, since f by hypothesis is not in R(Z). Suppose, say, f(zl) ~ (~o(zl), 
but f(z,) = ~)0(zz). Since f(zl) = lim~fn(zl) it follows that the point z I is not 
bounded away from the supports of the measures g#; in more simple language, 
the functions f~ have poles ,~ near z, and with increasing n those poles converge 
to z,. Such poles correspond to terms of the form m~/(2n - z,) and it is easy to 
infer from the boundedness of the numbers f~(zl) that these terms are uniformly 
bounded in absolute value. Thus, since the denominators tend to zero, the nu- 
merators m~ also do, and we infer that the function (~0(0 has not so many poles 
as thef~(~); i.e. degree ~o(~) is at most N - I. It follows that the Loewner deter- 
minant computed for ~o(~) and the set z2, z3, z3, "", zt vanishes, and since this is 
also a Loewner determinant for f,  that function has a Loewner determinant 
which vanishes. This contradicts the hypothesis that f was an interior point of 
P(Z). In the case thatf(z) differs from ~bo(Z) at both endpoints, the function fro(Z) 
is of degree at most N - 2 since at least two poles have disappeared in the limiting 
process. We then argue as before using a Loewner determinant of lower 
order. 

The uniquely determined rational function associated with f in P(Z) by the 
previous lemma will be called the canonical representation off .  Note that it exists 
only when l is odd. 

LEMMA 3. A boundary point f of P(Z) belongs to that cone if and only if H is 
satisfied. 

Proof. We suppose that f is a boundary point of P(Z) which does not belong 
to that cone but which does satisfy II and deduce a contradiction. Since f is a 
limit of a sequence of interior points of P(Z), each representable as a rational 
function in P[zl, z,] of degree at most N, we argue as in the previous lemma to 
find a rational ~b0(~ ) in P[z 1, zz] of degree k < N - 1 which coincides with f at 
all points of Z except perhaps the end points. Since f is not in P(Z), f cannot 
coincide with ~b0(~ ) at both end points. 

If  k < N - 2 there exists a subset S of Z consisting of 2k + 2 points and not 
containing the end points z~ and z~; the corresponding Loewner determinant of 
~bo(~), and therefore off ,  is zero. Since f satisfies II, all Loewner determinants of 
that order for f vanish, in particular the one computed for the system of points 
zl, z2, z~,..., z2k+2. Because f coincides with ~b0(~ ) at all of th (points except 
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perhaps zl, the Remark following Theorem I guarantees that f ( z l ) =  qbo(Zl) 
as well. We argue similarly to show f(zl) = $0(zl), whence f coincides with tko, a 
contradiction. 

I f  k = N -  1 the function ~bo( 0 coincides with f for at least one of  the end 
points, because if  not, then in the limiting process fn(O converging to ~b0( 0 at 
least two masses would be destroyed, whence degree $0 < N - 1. We suppose 
f(zl) = ~bo(Zl) and deduce that the Loewner determinant o f f  associated with the 
set of 2N points obtained by omitting zl vanishes. From II then, it follows that 
the Loewner determinant o f f  associated with the first 2N points of Z vanishes, 
and again, by the remark following Theorem I, f(zl)  = ~b0(z~), a contradiction. 

We pass next to the more complicated case when l is even: l = 2N, N > 1. 
The results of Lemmas 1 and 2 can be brought over to this case by the following 
device. We select a point ~ in the interval zx < $ < z2 and adjoin it to Z to obtain 
a set Z of l + 1 points. Every f in P(Z) is the restriction to Z of an element in 
P(g). The projection mapping of C(Z) onto C(Z) carries P(Z) onto P(Z) and maps 
interior points of P(Z) into interior points of P(Z). Thus from property II we 
obtain most of the following lemma. 

LEMMA 4. A point f of P(Z) is an interior point of that cone if and only if  all 
of its Loewner determinants are positive. Every f in P(Z) is the restriction to that 
cone of a rational function in P[zl, z~] of degree at most N; this rational function 
is unique if and only if  f is a boundary point of P(Z). 

Proof. Since an interior point of P(Z) possesses an extension to P(2~) which 
is an interior point of that cone, it is clear that there exist infinitely many choices 
for the value of the extension at ~ each of which corresponds to a different canonical 
representation of the extended function. Thus the representation cannot be unique 
for an interior point, however, Theorem I guarantees that it is unique when f is a 
boundary point, since then a Loewner determinant vanishes. 

The assertion of Lemma 3 is also valid when l is even, its demonstration how- 
ever, is difficult. This is the content of Lemma 6 of the next section; we will assume 
it now and pass to the proof of our principal theorem. 

TrmOl~M II. A function f in C(Z) belongs to P(Z) if  and only if  I and H are 
satisfied. 

Proof. We know that the conditions are necessary for f to belong to P(Z). 
Our argument is by induction, the assertion for l = 2 and l = 3 being trivial. 
Supposing the theorem true for 1 - l, and that f in C(Z) satisfies I and II, there 
exists a g(z) in P(Z) so thatf(zk) = g(Zk) for all k ~ 2 by the inductive hypothesis. 
We form ht(z ) = tg(z) + (1 - Of(z), where 0 < t < 1. 

I fg  = hl is an interior point of P(Z) all of its Loewner determinants are positive. 
Since the Loewner determinants for h t are linear in t, all positive for t = 1 and 
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non-negative for t = 0, it follows that no ht for t > 0 can be a boundary point 
of P(Z); from continuity considerations, then, either f =/lo is in P(Z) itself, or 
is at least a boundary point of that cone. Because II is satisfied, it follows t h a t f  
is an element of P(Z). 

I f g  = hi is only a boundary point of P(Z) it must be the restriction to Z of a 
uniquely determined function ~b(0 in the class P[zl, zd which is rational of degree 
k. If we were to suppose that no Loewner determinant o f f  were zero, we choose 
any non-rational function $ ( 0  in the class P(zl - 1, z~ + 1) and form f + 85 
for small positive 5. If 8 is sufficiently small, f + e5 has all of its Loewner de- 
terminants positive, these determinants being continuous functions of their 
arguments. The function g + ~5 belongs to P(Z) and is not the restriction to Z of 
a rational function in P[zt, z~], hence is an interior point of P(Z). Since it 
coincides with f + t5  at all points of Z except z2, the argument which we have 
just given shows t h a t f  + 85 is in P(Z); the ~ being arbitrary, it follows as before 
that either f is in the cone P(Z) or it is a boundary point of that cone. Since f 
satisfies II, it must then be an element of that cone. 

Thus, for the balance of the proof, we may suppose that g is rational of degree k 
and that both f and g have Loewner determinants which vanish. We must have 
k < N - 1 where 1 = 2N or l = 2N + 1. There exists therefore, when l is odd, 
or when k < N - 2 a proper subset of Z consisting of2k + 2 points not containing 
z2 so that the corresponding Loewner determinant ofg (and therefore off)  vanishes. 
Since both f and g satisfy II, the Loewner determinants computed for 

2"1, Z2, "",  Z2k+2 

vanish, whence f(z2) = g(zz) by Remark 1. If l = 2N and k = N - 1, only the 
largest possible Loewner determinant vanishes, but it vanishes for both functions; 
we obtain, as before, f ( z2)= g(z2) completing the proof. 

3. Representations for even I. In this section we suppose that f is an interior 
point of P(Z) where l = 2N is even. Because f is interior there exist a variety of 
extensions of f to P(~) where Zis  obtained from Z by the adjunction of a point. 
Thus there exist a variety of functions, rational of degree N belonging to P[zl, z~] 
which coincide with f on Z. Our purpose is to study these representations. 

Let fo(z) and f~o(z) be two such functions; we consider their difference 
h(z) = fo(z) -f~o(z) which is rational of degree at most 2N. Since this function 
does not vanish identically and has 2N zeros as the points of Z, it follows that 
it has degree exactly 2N, and since its poles are simple, both fo and f® are of 
degree exactly N and have N distinct poles. We see that there is no loss of gener- 
ality if we suppose that the poles of fo and fo0 are all finite. 

We write these functions as ratios of relatively prime polynomials with real 

coefficients: 
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f o ( z )  _ O o ( Z )  f (z) = 
Zo(Z) 

where the denominators are polynomials of degree exactly N with real distinct 
and simple zeros. For the difference we then have 

h( z )  = - o (z)ro(z) _ 
• T = ( z ) z ( z )  

The numerator, ~(z) cannot vanish identically and is of degree at most 2N; since 
it vanishes at the points of Z it has degree exactly 2N and has simple zeros at 
those points. 

We consider any two adjacent poles of h(z) in the interval z < Zl; since the 
zeros of h are all in the set Z, there is no zero between these poles, and hence 
the residues at these poles are of opposite sign. Because h is the difference of two 
functions in P, and such functions always have negative residues, it follows that 
one of this pair of poles is a pole offo and the other a pole offo0. The same argument 
holds if  we consider a pair of adjacent poles of h in the interval z~ < z or in a 
projective neighborhood of the point at infinity. We conclude that the zeros of 
Zo(Z) and T~o(z) separate one another on the projective real axis. 

From the foregoing it follows that the function T(z) = - Zo(Z)/Z®(z) has 
residues of  the same sign at all of its poles; there is no loss of generality in sup- 
posing that these residues are all negative, and therefore that T(z)  itself is in P. 

Next we introduce the family of polynomials zt(z) = zo(z) + tz®(z) where t 
varies over the real axis with the convention that t = oo corresponds to zoo(z). 
All of these polynomials, save one, are of degree N, and the exceptional one will 
be supposed to have a zero at infinity. With this convention it is immediate that 
the zeros of  zt(z) are exactly the set of points on which T(z)  = t, and since T(z) 
belongs to P, it is monotone increasing between its poles and assumes every real 
value just once in any such interval. Thus for any pair of values, t, s the zeros of 
zt(z) and T~(z) separate one another. Moreover, all of these zeros are real and 
simple, and there are exactly N of them. 

From this circumstance it follows that the Wronskian 

W ( z )  = - 

never vanishes on the real axis since no z,(z) has a multiple zero. We may therefore 
suppose that this real polynomial is positive on the real axis. 

The values taken by the function T(z) on the set Z are called exceptional values 
of t; since T belongs to P[zl,  z,] these values are distinct, and there are therefore 
2N of them. We write t k = T(Zk) and note that ztk(z) has a zero at z = Zk but 
does not vanish at any other point of  Z. 

For values of t which are not exceptional the rational functions 
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A(z) = ~o(Z) + ta~(z) _ ~,(z) 
• co(Z) + t ~ ( z )  ~,(z) 

coincide withf(z) on the points of Z and are of degree at most N. It will presently 
become clear that they are of degree exactly N. For exceptional values of t, say 
t = tk, the denominator zt(z) vanishes at the point zk, however, the numerator 
also does, since 

a ( z O  = 0 % ( z ) =  [z~(zOl-*[z~(z~),ro(Z,) - ' co (Zk)~(z~) ]  = "coo(zk) 

Hence for the corresponding ft,(z) we must understand the rational function 
obtained after the common factor ( z -  zk) is cancelled from numerator and 
denominator. This function coincides with f at all points of Z other than Zk; 
it is of degree N - 1 and is the canonical representation for the restriction of 
f to the set of 2N - 1 points obtained by omitting Zk from Z. That function 
therefore belongs to P, however, f(zk)cannot equal ftk(Zk) since f is an interior 
point of P(Z). 

If  x is a real point not contained in Z, then as t varies over the real axis the 
quantity ft(x) is a linear fractional transformation in t which is non-degenerate 
its determinant, ~(x) being non-zero. We deduce that ifg(z) is any rational function 
of degree at most N which coincides with f on the set Z, then g is a member of 
the family ft; to show this, we remark that g cannot coincide with ft when t is 
exceptional; thus there exists a real x not in Z for which g(x) v~ ftk(x) for all k. 
We then select t so that f,(x) = g(x) and note that the difference g(z) - f,(z) is of 
degree 2N and has 2N + 1 zeros. 

Again, when x is real and not in Z there exists exactly one value of t such that 
ft(z) has a pole at x, viz. t = T(x). We compute r(x), the residue of that function 
at that pole. We choose a small circle C with center at x and radius 8 and write 

r(x) = 1 fc aoCz) + T(x)tr~(z) 
2=-~ "Co(Z) + T(x)'c,o(z) azl~ 

If  we suppose that T(x) is finite the integrand may be written 

z ® ( X ) O o ( Z )  - Zo(X)~(z) 
• coo(X)*o(Z)- *o(X)*®(z) 

and for small values of 8 the numerator approaches 

-r®(x)o'o(X) - "co(X)a~(x) = ~(x) 

while the denominator is approximated by 

(z  - x )  [ ' c . ( x ) ~ ( x )  - " c o ( x ) e ( x ) ]  = (z  - x )w(z ) .  
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Since e may be arbitrarily small, it follows that r ( x )=  6(x)l(W(x)) and this 
rational function has no poles on the real axis and has exactly 2N simple zeros, 
all of which are at the points of  Z. By continuity, the same formula is valid for 
the points x which appear as poles of T(z). 

Since there exists a value of t for which ft(z) is in P[z~, zz] we see that r(x) is 
negative for x outside the closed interval [z~, zt] as well as for x inside intervals 
of the form Z2k < X < Z2k+,, while r(x) is non-negative elsewhere and zero only 
at the points of Z. Since Z is contained in an interval between two adjacent zeros 
of zoo(z), an interval which we may call (a, b), every ft  has precisely one pole in 
[a, b). Thus ft is in P[zl, zt] if  and only if  it has no pole in [zl, zz]. 

We pass to the study of the function for exceptional values of t. We have already 
remarked that ftk(Zk) is not equal to f(Zk);it is possible to compute the difference 
of these numbers. For the sake of simplicity we avoid the special value of t for 
whichft(z) has a pole at infinity if that value is exceptional; the functionsft  may 
then be written in the form 

n mi(t)  
ft(z) = ~(t) + ~=I Y~ 2~-'~ -- z 

where m~(t) = - 6(2~(t))/W(2i(t)) and the 21(t) are the roots of T(z) = t. The 
quantity ~(t) is the value off,(z) at infinity and is a linear fractional function of t. 
We will suppose that 2x(t) is the root which varies from a to b. As t approaches 
tk = T(Zk), Ix(t) approaches zk and the first term in the sum converges to 

lira - 6(x) _ - 6'(zk) 
~,~ IV(x)  ( x  - z , )  W ( z k )  " 

The other terms in ft(z) depend continuously on t and converge to the corres- 
ponding terms offtk(z); no term corresponding to the first appears inftk(z) even 
though the limit above is non-zero. Thus 

~'(z,) 
Z~(z,) - f(zk) = W(z,) 

and the sign of this quantity depends on the parity of k. In particular, one verifies 

that  ft ,(zt) > f ( z l )  as well as f , (zz)  <f(z~). 
This circumstance gives rise to the following remarkable property of the ca- 

nonical representation in the case when l is odd, l = 2N + 1. 

LEMMA 5. I f  l is odd, f in P(Z) and dp(O the canonical representation o f f ,  and 
i f  ~(~) is any function in P[z~, zt] which coincides with f at the points o f  Z,  then 
~(~) is regular in any interval containing [zx, z~] in which ~k(~) is. 



166 W.F.  DONOGHUE, tiP.. [September 

Proof. Suppose $(~) regular in an interval [z', zz] containing [zl, zl]; we adjoin 
z' to Z to obtain a set of 2N + 2 = 1 + 1 points Z'. The restriction of ~/(~) to Z' 
determines a function g in P(Z') which coincides w i t h f  at the points of Z. We may 
suppose that g is an interior point of P(Z'), since otherwise the functions ~,(~) 
and $(~) coincide. It follows that $(~) is one of the exceptional functions in the 
family gt(~) associated with g in P(Z'), hence is regular analytic in the interval 
[z', zl]. We can argue similarly with a point z" to the right of z v In addition, we 
will have g(z') = ~b(z') < ~b(z') and g(z") = ~b(z") >- ~p(z"). 

In conclusion, we establish a lemma which we used in the proof of Theorem II. 

LEMMA 6. When l is even, a boundary point f of P(Z) belongs to that cone if 
and only if H is satisfied. 

Proof. We suppose l = 2N. As before, we deduce a contradiction from 
the hypothesis that f is a boundary point of P(Z) which does not belong to 
that cone but which does satisfy II. Our argument is much the same as before; 
f is the limit of a sequence f~ in the interior of P(Z), and these functions may be 
represented by rational functions of degree N in P[zl, zl]. Since there is a choice 
for these representatives, we take them in such a fashion that the nearest poles 
are distributed symmetrically about [zl, zt]; more precisely, we select each time 
the representativefttn)for f~ so that if  2' is the nearest pole off t°) to  the left of zl 
and if2" is the nearest pole to the right ofz~, then z~ - 2' = 2" - z,. A subsequence 
of  the sequence of rational functions so determined then converges to a rational 
~b([) which coincides with f at all points of Z except, perhaps, the end points. 
The representatives have been chosen in such a way that at least two poles are 
destroyed, i.e. ¢(() is necessarily of degree at most N - 2. Thus the Loewner 
determinant for ¢(~) associated with the set z2, z3, z3, '",  z~_ ~ vanishes and there- 
fore the corresponding Loewner determinant o f f  does. We now argue exactly as 
in the proof of Lemma 3 to infer thatf(zt)  = ~b(zl) andf(zl) = ~b(zs), hence t h a t f  
is in P(Z), a contradiction. 

4. The cone P'(Z). By P' we denote the subclass of P consisting of functions 
which are regular and positive on the open right half-axis. These functions admit 
the canonical representation obtained from (1) which follows: 

(3)  0o 

where • _~ 0, /~ = ~b(0) > 0 and j'_°~(1 + ~2)-1d/~(2) is finite. 
It is easy to see that if  q~(~) belongs to P' ,  so also does 6(~)= [~b(1/~)]-1 as 

well as ¢*(~) = ~¢(1/£). 
In this section we shall suppose that Z is a subset of the open right half-axis 

and shall seek necessary and sufficient conditions that a function f i n  C(Z) should 
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belong not just to P(Z) but to P'(Z), the cone consisting of restrictions to Z of 
functions in P'.  It is clear that the cone P'(Z) is closed, for a sequence in P '  which 
converges on the points of Z has a subsequence converging on all points of the 
positive real axis, those points being bounded away from the supports of the 
measures; moreover, the limiting function is non-negative on the right half-axis, 
hence is in P' .  

It is also evident that i f f  belongs to P'(Z) there exists a non-negative value C 
such that i f f  is extended to the origin by f(0) = C, the extended function is in 
P(Z u 0). Unfortunately, we cannot always take C = 0. 

We introduce the set Z* consisting of reciprocals of points in Z 

1/zl < 1/z1-1 < 1 / z t - 2  < ""  < 1/Zl 

which may also be written z* < z* < z* < ... < z* and consider the following 
conditions, concerning f in C(Z). 

III. f may be extended to a non-negative function in P(Z u O) 
IV. The functionf* defined on Z* byf*(z~) ----- z~f(1/z*) may be extended to a 

non-negative function in P(Z* u O) 
V. The function J~defined on Z* by j~z*)= [f(1/z*)] -I  may be extended to a 

non-negative function in P(Z* u 0). 
We then have 

TrmOREM III. A function f in C(Z) belongs to P'(Z) if  and only if  
(a) when l is odd, 111 and V are valid 
(b) when l is even, 11I and IV are valid. 

Proof. The necessity is an immediate consequence of our comment concerning 
the functions ~ ( 0  and ~b*(O when ~b(() is in P'. For the sufficiency we must give 
different arguments depending on the parity of L We remark that we possess 
examples showing that the state of affairs is essentially different when I is odd 
and when l is even. 

When l = 2N + 1 is odd, we pass from f in C(Z) satisfying III and V to its 
canonical representation ~b(0, a rational function of degree at most N belonging 
to P[zl, zd. Since there exists a non-negative function in P[0, zl] which coincides 
with f on Z, it follows from Lemma 5 that ~b(0 is regular and non-negative in 
[0, zd, and we have only to show that this function has no poles to the right of z~, 
thereby putting it in P '  and therefore putting f i n  P'(Z). However, we may argue 
similarly with the functionfdefined on Z* to find that its canonical representation 
~ (0  is non-negative and regular in [0, z*]. Since both ~b(0 and ~k(0 are rational 
and of degree at most N and satisfy the equations ~b(z*)= [~b(1/z*)] -1 
for all 2N + 1 values of k, it follows that identically in ~ we have 

~#(0 -- [~(l/O] -1. 
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The regularity of ~(~) in [0, z*] therefore implies the regularity of qS(~) in 
z z < z <  + oo. Hence ~(~) is in P'. 

When l = 2N is even our argument is somewhat more complicated. Since III 
and IV surely imply that f is in P(Z) and f *  is in P(Z*) we will suppose at first 
that each of these functions is an interior point of the corresponding cone and 
make use of the representation theory developed in the previous section. Let C 
be so chosen that whenf i s  extended to 0 by the definition f(0) = C the extended 
function is in P(Z u 0); because of III there exists such a C which is non-negative. 
In the familyft(z) associated wi thfwe select the functionf,(z) for which f~(0) = C; 
this function is rational and of degree at most N and is the canonical representation 
of the extended function considered on the l + 1 points of Z u 0. It follows that 

f~(z) is in P[0, zt]. It is not difficult to see that if t is varied so that the poles of f t  
move to the right, the numberft(0) diminishes; it follows that we can pass con- 
tinuously to that member of the family for whichft(0) = 0 without departing from 
the class P[0, zt]. We let t = 0 correspond to the rational function so determined; 
fo(z) is of degree at most N and belongs to P[0, zz] and satisfies fo(0) = 0. Since 
fo(z) is non-negative in [0, zl] we have only to show that it has no poles to the 
right of z~ to make sure that it belongs to P' .  For this purpose we pass to the 
ratonal function g(~) = ~fo(1/~) which is also of degree at most N and which 
coincides with f*  on the points of Z*. It follows that g(£) is a member of the 
familyft*and therefore that the residue ofg(~) at any pole to the left of z* = 1/z~ 
is negative. If, now, fo(~) had a pole to the right ofzz, g(~) would have one in the 
interval 0 < z < z* and the residue there would be negative. However, if we 
make the explicit computation we will have 

m 
fo(~) = h(~) + ~ where m > 0 and ~ < z t with h(~) 

regular near 2, and 

g(¢) = CY(ll¢) + 
- 

which has a positive residue at the pole 1/2. Thus fo(~ ) had no pole to the right 
of z, and was therefore in P'.  

Finally, if the functions f and f *  are not both interior points of their respective 
cones, we have only to pass to f + e x/z which corresponds to f*  + e x/z for small 
positive ~. The perturbed functions are interior points of those cones and also 
satisfy III and IV. From the fact that P'(Z) is closed we infer that f i s  inP'(Z), 
completing the proof of Theorem III. 

We do not give the easy proof that an element f i n  P'(Z) may be extended to 
the origin by f(0) = 0 if f is an interior point of P(Z). 
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5. The theorems of Pick and Carath~dory. The problem considered in 
Section 2 can equally well be studied under the hypothesis that the finite set Z 
is a subset of the open upper half-plane; we would then seek conditions for a 
function in C(Z) to belong to the cone P(Z), the restrictions to Z of functions in P. 
The solution has been given by Pick. [5] 

THEOREM. A function f ( z )  in C(Z) which is not a real constant is the restriction 
to Z of  a function c~(~) in P if  and only i f  the imaginary part o f f ( z )  is positive and 
the matrix of  order l 

f(z~) -- f ( z j )  
Pij - -  

z i - -  ~ j  

is a positive matrix. This matrix has the eigenvalue 0 with multiplicity k > 0 if  
and only i f  qb(~) is a rational function of  degree I - k and in this case ~(¢) is deter- 
mined uniquely by the data. 

We do not give a proof of this theorem which can be established by the same 
arguments which we have used to prove Theorems I and II, the proof, however, 
is substantially easier since in the present case the cone P(Z) is closed and we may 
also always argue with positive matrices rather than with determinants. 

A completely analogous theorem is due to Carath6odory who considered the 
convex cone of functions u(z) harmonic and positive in the unit circle; such 
functions admit a Fourier expansion 

u(r e i°) = Z c k r l k l  eikO 

the summation being taken over all integers. The following theorem is due to 
Carath6odory. 

TI-mOREM. A system of  numbers {el} - N <- i <- N form the Fourier coef- 
ficients o f  order < N o f  a positive harmonic function u(z) i f  and only i f  the matrix 
o f  order N + 1 defined by 

Ctj = c~_y 

is a positive matrix; 0 is an eigenvalue of  Cii with multiplicity k > 0 i f  and only i f  
u(z) is the real part o f  a rational function of  degree N + 1 - k, and in this case 
u(z) is uniquely determined by the coefficients. 

Since the class of positive harmonic functions in the circle is in a one-to-one 
correspondence with the positive harmonic functions in the half-plane and since 
the latter are the imaginary parts of the functions in P, the similarity between the 
foregoing theorems is to be expected. It is important to note a geometric fact: 
in both cases one studies the projections on a linear space of dimension I of a 
certain cone in an infinite dimensional space, and the projections are cones which 
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inherit a certain property of the original cone, viz. the set of  (suitably normalized) 
extreme points forms a skew curve. The cones thus have an extraordinary multipli- 
city of  faces of  lower dimension. This geometric situation is more conveniently 
studied if  a suitable normalization condition reduces the study to one of a convex 
body;  we then obtain a convex polytope and the study reduces to the study of  
"neighborliness" introduced in recent years. [3] 
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